Critical Concentration for Hydrogen Bubble Formation in Tungsten

L. Suna, S. Jina, H. B. Zhoua, Y. Zhanga, G. H. Lua, X. L. Shua, W. Zhangb, H. T. Leec and Y. Uedac

aSchool of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
bShanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
cGraduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

jinshuo@buaa.edu.cn

In the fusion devices, tungsten (W) will be exposed to high fluxes of H isotopes, leading to unexpected surface blistering. The local H concentration is believed to directly affect the formation process of H bubble, and thus play a critical role in determining the property degradation and mechanical integrity of W.

Using the energetics of H calculated from first principles as input parameters, we are able to determine the H concentration in metals such as W via the thermodynamic models. For H concentration in intrinsic metals without any defects, such thermodynamic model has been well established as the well-known Sievert’s law. It is more practical, however, to determine the H concentration in metals with defects such as a vacancy. With the consideration of defects in W, we further derive formulations of the thermodynamic model that are more suitable for vacancy and multiple H-vacancy complex. Based on the derived formulations, we calculate the equilibrium H concentration and its dependence on the H pressure and temperature using the first-principles dissolution energies for W as inputs [1].

At a certain temperature, the H concentration exhibits a sharp increase beyond a critical H pressure, which is mostly originated from the increase of H at the mH-V complexes. This indeed corresponds to a critical H concentration associated with the H bubble formation in W. Such critical concentration and pressure are clearly defined as the values when the concentration of H at one certain mH-vacancy complex first equals to that of H at the interstitial, which are 24 ppm/7.3 GPa at 600 K in W. Beyond such critical H concentration, considerable H atoms will accumulate into the vacancy, leading to the formation and rapid growth of the H-vacancy complexes, which is the preliminary stage of the H bubble formation. Consequently, we are able to plot a pressure-temperature phase diagram for W with and without H bubble formation separated by the critical H concentration as a function of temperature.

Experimentally, the ion-driven H isotope permeation in W has been investigated using a high flux ion beam test device coupled with a permeation device [2]. This gives clear information whether the H bubble forms for the measured H concentration points based on the Zakharov’s diffusivity. The experimental H concentrations are within the predicted phase region by the thermodynamics model both with and without H bubble formation. This suggests that the predicted critical H concentrations are consistent with experimental observations, and thus may serve as a possible criterion to evaluate the H induced failure of metallic PFM's in the future fusion reactors.